Power Concepts, Part 2
Calculating/Estimating ES
Planning Sample Size

Overview
- Diagnosis / Description
 - Finding the effect size of a completed study
- Planning
 - Determining/estimating effect size
 - Determining sample size using ES, desired power, and \(\alpha \)

Descriptive Measures of Effect Size (ES)
- Post-hoc analysis: \(d \)
- \(d = \frac{\bar{Y}_1 - \bar{Y}_2}{s_{12}} \); where \(s_{12} \) is the pooled SD
- Population parameter: \(\delta \) (lowercase delta)
- Difference relative to the variability of the observations
- Cohen’s guidelines: small = .20; med = .50; large = .80
Descriptive Measures of Effect Size (ES)

- Post-hoc analysis: R^2
- R^2 = proportion of variance accounted for
- Population parameter: ω^2 (omega)
- Proportion of variance accounted for by an effect
- $R^2 = \frac{SS_A}{SS_{total}}$ OR $\frac{(a-1)F}{(a-1)F + a(n-1)}$
- Small = .01, medium = .06, large = .15

Descriptive Measures of Effect Size (ES)

- Post-hoc analysis: η^2 (eta-squared)
- SPSS will calculate η^2 or partial η^2 for a variety of tests (t, F, etc.)
- Proportion of variance accounted for by an effect
 - Main effect or interaction, excluding other sources
- Ranges from 0 to 1
- Conventions: small = .01, med = .06; large = .14
- No conventions have been established for partial η^2 (some use those for η^2 but these are considered too large)

Estimating Effect Size (ES) in the Population

- d, R^2 and η^2 overestimate population treatment effects
- $\omega^2^{(est)} = \frac{SS_A - (a-1)MS_{S/A}}{SS_{total} + MS_{S/A}}$
 - If the anova summary table is available
- $\omega^2^{(est)} = \frac{(a - 1)(F-1)}{(a - 1)(F-1) + an}$
 - If only F stats are available
- K&W recommendations:
 - Report d if discussing the difference between two means
 - Otherwise, report $\omega^2^{(est)}$
Planning: How to Determine Sample Size

- Need an effect size
- Need to determine desired power level
 - Recall that .50 power = flipping a coin
- Select power in range .50 to .95
- The current convention is become .80 for the behavioral sciences; balance between need for adequate power and available resources

Where do we get ES from?

- From the literature: "Actuarial approach" (reviews or meta-analyses)
- From the literature: Empirical articles
 - Use a set of plausible means typical of a DV
 - Use the F statistics of a study with similar IV/DV
 - See Keppel & Wickens for procedure
- Pilot data
 - Convert this information into an ES (handout)
- Assumptions:
 - With no other information, assume a small effect size
 - Minimum effect needed to justify the research

Determining Sample Size

- We need desired power, ES, and alpha
 2) Pearson-Hartley Charts in K&W and many other reference books (requires the calculation of phi ϕ)
 3) Software: GPOWER, MINSIZE (URL for free software on class website)