[15] “Perturbative Quantum Field Theory and L¥-Algebras”, Advances in Topological Quantum Field Theory, Proceedings of the NATO ARW on New Techniques in Topological Quantum Field Theory, editor J. Bryden, Kluwer Academic Publishers, 2004, p. 243-252.

[14] “A note on duality and Frobenius algebras”, to appear in J. Knot Theory and its Ramifications, 2004, Vol. 13. No. 8 (December 2004), 1-8 (submitted: 03/2002)

[13]Non-abelian cohomology via parity quasi-complexes”, Homology, homotopy and Applications, Vol. 6, No.1, pp. 49-58, March, 2004.

[12] “Remarks on quantum theory and noncommutative geometry”, Int. J. Pure and Applied Math., Vol.11, No.4, 2004, pp.363-376.

[11] “Cohomology of Feynman graphs and perturbative Quantum Field Theory”, Focus on Quantum Field Theory, Nova Publishers Inc., O. Kovras (editor), ISBN: 1-59454-126-4, 2004, 17 pages.

[10] “Red-Black Interval Trees in Device-Level Analog Placement”, in collaboration with F. Balasa, S. Maruvada, K. Krishnamoorthy, IEICE Transactions, Vol.E86-A No.12 pp.3127-3135, 2003/12.

[9] “Categorifying the bar resolution”, JP Journal of Algebra, Number theory and Applications, Vol. 3(3) 2003, pp.337-350.

[8] “Non-associative algebras: a Framework for Differential Geometry”, Int. J. Math. Math. Sci.., Vol. 2003, No.60.

[7] “Categorification and Group Extensions”, Appl. Cat. Str. 10 (2002), 35-47.

[6] “On ideals and homology in additive categories”, Int. J. Math. Math. Sci, Vol. 29, No.8, 2002;

[5] G. Pripoae, L. Ionescu, “Singular Distributions and Associated Connections”, Classical analysis (Kazimierz Dolny, 1991), 219-223, World Sci. Publishing, River Edge, NJ, 1992.

[4] L. Ionescu, C. Pribeanu, “A multi-tasking implementation of the GKS standard”, Romanian review of informatics, No.2, 1991.

[3] L. Ionescu, G. Pripoae, “Some Aspects Concerning Non-differetiable Foliations in semi-Riemannian Manifolds”, Proc. 21-st Conf. on Differential Geometry and Topology, Craiova, Romania, 1990.

[2] I. Cimpeanu, L. Ionescu, “Spaces analysis techniques based on bodies illumination”, Proc. Conf. CAD, I.C.I., Bucharest, 1986.

[1] I. Cimpeanu, C. Ionescu, L. Ionescu, V. Ionescu, “BUILDSTAR: An interactive graphical system for CAD in architecture and constructions”, Proc. Conf. on CAD, I.C.I., Bucharest, 1985.

Preprints and Scholarly Papers

[15’] “A combinatorial approach to coefficients in deformation quantization”,math.QA/0404389.

[14’] “Perturbative quantum field theory and integrals on configuration spaces”, hep-th/0307062.

[13’] “A Hopf algebra deformation approach to renormalization”, with M. Marsalli, hep-th/ 0307112.

[12’] “The nonabelian bar resolution”,

[11’] “Cohomology of monoidal categories and nonabelian group cohomology”, Ph.D., 2000.

[10’] “Hochschild DGLAs and Torsion algebras”, math.DG/9910016.

[9’] “On Categorification”, math.CT/9906038.

[8’] “Overview: non-abelian cohomology and parity quasi-complexes”, home page, 1998.

[7’] “Parity Complexes and Non-abelian Cohomology”, math.CT/9808068, 1998.

[6’] “Torsion Algebras”, home page, 1998.

[5’] “On Deformation Quantization”, home page, 1997.

[4’] “State Sum Invariants of 3-Manifolds”, MS report, KSU, 1996.         

[3’] “PHIGS versus GKS for CAD systems”, I.C.I. report, Bucharest, Romania, 1989.

[2’] “Pairs of Operators Commuting modulo C1”, M.S. thesis, Bucharest University,1982.

[1’] “Banach Spaces with the Radon-Nicodym Property”, B.S. thesis, Bucharest University, 1981.