**Publications**

[15] “Perturbative Quantum Field Theory and L_{¥}-Algebras”,
Advances in Topological Quantum Field Theory, Proceedings of the NATO
ARW on
New Techniques in Topological Quantum Field Theory, editor J. Bryden, Kluwer
Academic
Publishers, 2004, p.
243-252.

[14] “A note on duality and Frobenius
algebras”, to appear in J. Knot
Theory and its Ramifications, 2004, Vol. 13. No. 8 (December 2004), 1-8 (submitted: 03/2002)

[13] “Non-abelian cohomology via parity
quasi-complexes”, Homology, homotopy and Applications, Vol. 6, No.1,
pp. 49-58,
March, 2004.

[12] “Remarks on quantum theory and noncommutative geometry”, Int. J. Pure and
Applied Math.,
Vol.11, No.4, 2004, pp.363-376.

[11] “Cohomology
of Feynman
graphs and perturbative Quantum Field
Theory”, Focus
on Quantum Field Theory, Nova Publishers Inc., O. Kovras
(editor),
ISBN: 1-59454-126-4, 2004, 17
pages.

[10] “Red-Black Interval Trees in
Device-Level Analog Placement”, in collaboration with F. Balasa,
S. Maruvada, K. Krishnamoorthy,
IEICE Transactions, Vol.E86-A No.12
pp.3127-3135,
2003/12.

[9] “Categorifying
the bar resolution”, JP Journal of Algebra, Number theory and
Applications,
Vol. 3(3) 2003, pp.337-350.

[8] “Non-associative algebras: a
Framework for Differential Geometry”, Int. J. Math. Math.
Sci..,
Vol. 2003, No.60.

[7] “Categorification and Group Extensions”, Appl. Cat. Str. 10
(2002), 35-47.

[6] “On ideals and homology in additive
categories”,
Int. J. Math. Math. Sci, Vol. 29, No.8,
2002;
lanl.arXiv.org/abs/math.CT/9906039.

[5] G. Pripoae, L. Ionescu, “Singular Distributions and Associated Connections”, Classical analysis (Kazimierz Dolny, 1991), 219-223, World Sci. Publishing, River Edge, NJ, 1992.

[4] L. Ionescu, C. Pribeanu, “A multi-tasking implementation of the
GKS standard”,
Romanian review of informatics, No.2, 1991.

[3] L. Ionescu, G. Pripoae,
“Some Aspects Concerning Non-differetiable
Foliations
in semi-Riemannian Manifolds”, Proc. 21-st
Conf. on
Differential Geometry and Topology,

[2] I. Cimpeanu,
L. Ionescu, “Spaces analysis techniques based on bodies illumination”,
Proc.
Conf. CAD, I.C.I.,

[1] I. Cimpeanu,
C. Ionescu, L. Ionescu, V. Ionescu, “BUILDSTAR: An interactive
graphical system
for CAD in architecture and constructions”, Proc. Conf. on CAD, I.C.I.,

**Preprints
and Scholarly Papers**

[15’] “A
combinatorial
approach to coefficients in deformation quantization”,math.QA/0404389.

[14’] “Perturbative
quantum field theory and integrals on configuration spaces”,
hep-th/0307062.

[12’] “The nonabelian
bar
resolution”, http://xxx.lanl.gov/abs/math.CT/0108147

[11’] “Cohomology
of monoidal categories and nonabelian
group
cohomology”, Ph.D., 2000.

[10’] “Hochschild
DGLAs and Torsion algebras”,
math.DG/9910016.

[9’] “On
Categorification”,
math.CT/9906038.

[8’] “Overview: non-abelian
cohomology and parity quasi-complexes”, home page, 1998.

[7’] “Parity Complexes
and Non-abelian Cohomology”,
math.CT/9808068, 1998.

[6’] “Torsion Algebras”,
home page,
1998.

[5’] “On Deformation
Quantization”,
home page, 1997.

[4’] “State Sum
Invariants of
3-Manifolds”, MS report, KSU, 1996.

[3’] “PHIGS versus GKS for CAD systems”,
I.C.I. report,

[2’] “Pairs of Operators Commuting modulo C^{1}”,
M.S. thesis,

[1’] “Banach
Spaces with the Radon-Nicodym Property”,
B.S. thesis,