Graph Complexes in Deformation Quantization
and
The Feynman Legacy
(Past, Present and Future)

by

Lucian Miti Ionescu
Illinois State University
(October 2006)

Talk based on the joint work with Domenico Fiorenza
math.QA/0505410 v.2

Bibliography:
• *Perturbative QFT and L_∞—algebras*, hep-th/0307062,
preprint based on Kontsevich’s preprint q-alg/9709040:
• *Deformation quantization of Poisson manifolds, I*.
Contents

The Feynman Legacy

• (Past) **Deformation Quantization:**
 Flato, Kontsevich, Cattaneo-Felder, etc.

• (Present) **Renormalization and Graph Homology:**
 Connes-Kreimer, Kontsevich, Fiorenza-Ionescu, etc.

• (Future) **Feynman Processes and Information Flow:**
 Fiorenza-Ionescu, B. Coecke, B. J. Hiley ...

 (Open list :-)
Why deformation quantization? (Moche Flato etc.)
- Start from the classical Poisson algebra of observables, and implement the Heisenberg commutation rules as a non-commutative deformations of the product:

\[\star = \cdot + \hbar \{, , \} + \ldots \]

- It is a “conservative approach” initiated by M. Flato etc., disregarding Heisenberg’s message: model states and transitions (reiterated by Feynman).

Q: How to build a star product? A: Kontsevich’s formula:

\[f \star g = \sum_{\Gamma} W_{\Gamma} B_{\gamma} \]

This is a series of differential operators \(B_{\Gamma} \) associated to graphs \(\Gamma \) according to a rule similar to a Feynman rule of QFT (perturbative approach):

\[\mathcal{U} : \mathcal{G} \rightarrow CE(T_{\text{poly}}, D_{\text{poly}}) \]

\[A = C^\infty(M), \text{ functions/observables on } M, \]
\[\mathfrak{g} = \text{Der}(A) \text{ vector fields}, \]
\[T_{\text{poly}} = \wedge^\cdot \mathfrak{g} \text{ polyvector fields}, \]
\[D_{\text{poly}} = \text{Hoch}^\cdot(A; A), \text{ differential operators on } M. \]
• The mapping \mathcal{U}: associates to a graph Γ colored by polyvector fields a differential operator:

$$< \mathcal{U}_\Gamma(\xi_1 \land \ldots \land \xi_n)|f_1 \otimes \ldots \otimes f_m > \in A.$$

• The bidifferential operators B_Γ: are obtained in the special case $m = 2$, when the graphs with two legs are colored using the Poisson bivector field π;

• Example - the 1st Bernoulli graph:

$$B_{b_1} = \mathcal{U}_{b_1}(\pi) = \pi.$$

• Kontsevich coefficients W_Γ: are obtained in a similar manner, using the same graphs, and a Feynman rule with a closed 2-form α (derived from the angle-form) on the Poincare half-plane (hyperbolic unit disk);

Amazingly, the formula works! (provides an L-infinity morphism and a star-product etc.) ... but why?
Why The Formula “works”?

- On the “physics side”, this result (deformation quantization), is the outcome of a deeper theory: Feynman Path Integral quantization!

The String Theory / sigma model interpretation was reviled by Cattaneo-Felder math.QA/9902090 (FPI quantization as a string theory/ sigma model on the Poincare half-plane).

- On the “mathematics side”, this result (formality) hides a deeper algebraic structure: dg-coalgebra (Hopf) of graphs, or DG-Lie algebra and morphism, Maurer-Cartan equation etc.

This was partially revealed by L.I. in hep-th/0307062, and explained in a “round form” together with D.F. in math.QA/0505410:

1) U is a morphism of DGLAs, W is a 1-cocycle of the DG-coalgebra of graphs (MC-solution of the dual DGLA), so $F = Wu$ is an L-infinity morphism.

2) $F = Wu$ is an L_∞-morphism (W is a DG-coalgebra cocycle/ DGLA MC-solution);

3) The Poisson structure α is a MC solution, which is mapped by the L_∞-morphism iF to a MC-solution, providing the deformation of the commutative product:

$$\star = \mu + F(e^\alpha).$$

It seems (to me) that the “underlying ideas” (algebraic structures involved) are more interesting then the “result” itself!

1It’s a “tautology”: quantization leads to quantization!
The Homological Algebra Interpretation

(Past)

• L.I.’s “IHES period” (working on renormalization and deformation quantization at the same time ²)
 - Kreimer’s coproduct and Kontsevich’s proof (sums of products ... must be a coproduct!)
 - “Reverse engineering” Kontsevich’s result ³: there’s a coproduct Δ and W is a cocycle: $W(\Delta \Gamma) = 0$.
 - Step 1: Reformulating Kreimer’s coproduct, and applying it to Kontsevich formula;
 - Step 2: Kontsevich differential d as a part of the coproduct.

• Conclusions (hep-th/0307062):
 1) Joining Kontsevich homology and Kreimer coproduct, yields a DG-coalgebra (Hopf) (dual picture: DGLA);
 2) Kontsevich coefficients W form a corresponding coalgebra 1-cocycle (dual picture: MC-solution);

• Developing the theory: “turn On” the homological algebra machinery (cobar construction $D = d + \Delta$ etc.), yields graph cohomology (in particular, defines the Cohomology of Feynman Graphs: math.QA/0506142).

² How to catch two rabbits at a time: merge them into one :-)
³ Concepts, concepts, concepts!
Solving “The Puzzle” (Together with Domenico Fiorenza)

- What is the map \mathcal{U}? It is a DGLA morphism mapping the Maurer-Cartan solutions in the DGLA of graphs to the Eilenberg-Chevalley complex.

- \mathcal{U} maps the MC-solution W to a MC-solution $U = \mathcal{U}(\sum_{\Gamma} W_{\Gamma})$.

Such an MC-solution is an L-infinity morphism and also a quasi-isomorphism (degree 0 part is) (Kontsevich’s proof of the Formality Conjecture).

Main results (math.QA/0505410): a conceptual interpretation of Kontsevich’s solution of the formality conjecture and deformation quantization of Poisson manifolds.

1) The Kontsevich graphs \mathcal{G} have a DG-coalgebra structure, or equivalently a (dual) DGLA structure (\S5);

2) The Kontsevich graphical calculus \mathcal{U} is a DGLA morphism (\S6) (calculus of derivations);

3) If W is a cocycle of \mathcal{G} (\S7), $\mathcal{U}(W)$ is an L-infinity morphism (the formality morphism) (\S4);

4) $\mathcal{F}(\exp(\pi))$ is a star product (\S4);

5) There is a solution involving only graphs without circuits (\S8): a semi-classical star product.
Main results explained

- The DG-coalgebra of Feynman graphs (§5):
 $\mathcal{G}^{\bullet, \bullet}$ is a bigraded DGLA, associated to a pre-Lie algebra of graphs, or dually a coalgebra, with coboundary differentials (internal differential is Kontsevich’s homology differential, and the external differential is Hochschild differential corresponding to Gerstenhaber composition by a preferred element)

- The DGLA morphism \mathcal{U} (§6):
 the Kontsevich rule defining \mathcal{U} (“a la Feynman”) is a graphical calculus of derivations (§2): vector fields ∂_i act on functions f
 \[X \mapsto \frac{\partial}{\partial x_i} f \]

- The formality morphism (between DGLAs):
 $\mathcal{F} = W\mathcal{U} : T_{\text{poly}} \to D_{\text{poly}}$
 is an L-infinity morphism, because W is a cocycle in the DG-coalgebra of graphs (solution of the MC of the dual DGLA of graphs).
 Since its zero degree is known to be a quasi-isomorphism (Kostant-Hochschild-Rosenberg Th.), it proves the D_{poly} DGLA is formal (quasi-isomorphic to its cohomology).
- The DG-coalgebra cocycle W:

$$0 = (D^*_{cob} W)(\Gamma) = W(d\Gamma + \Delta_b \Gamma)$$

$$= \sum_{e \text{ internal edge}} \pm W_{\Gamma/e} + \sum_{\gamma \subset \Gamma \text{ boundary}} \pm W_{\gamma} W_{\Gamma/\gamma},$$

or the **Maurer-Cartan solution** in the dual DGLA:

$$= \delta W + \frac{1}{2}[W, W](\Gamma).$$

It is defined using a similar “Feynman rule” with (winding number/angle form) $\alpha = d\theta$ defining the bivector field $dA = d\theta \wedge d\theta$.

- The **star product**: a MC-solution \mathcal{F} in the CE-complex:

$$\text{Hom}(T^\bullet(T_{\text{poly}}, D_{\text{poly}}) \cong \text{Hom}(T^\bullet(\mathfrak{g}, D_{\text{poly}}),$$

for example $W U$, maps the exponential of a Poisson structure, i.e. a MC-solution in T_{poly} (with trivial differential):

$$d\pi + [\pi, \pi] = [\pi, \pi] = 0 \quad (\text{Jacobi identity}),$$

to a MC-solution in D_{poly}, yielding a **perturbation** ∂, of the commutative product:

$$\star = \mu + \partial, \quad \partial = \mathcal{F}(\exp(\pi)).$$

MC – solutions $= T_\mu(\text{Moduli space of deformations}).$

- **Reduction to graphs without circuits**: if considering graphs without circuits, forests \mathcal{F}, the results hold essentially because the inclusion $\mathcal{F} \subset \mathcal{G}$ is a quasi-isomorphism of complexes. 4

4A different cocycle W may also solve the problem: math.QA/0507053.
Feynman Processes (a brief philosophical intermezzo)

- The method of Feynman Path Integrals, is a way of thinking: states and transitions, i.e. automata. It can be applied to classical mechanics as well as to QM/QFT (QM=(0+1)-QFT).

- Motto: Quantum Physics IS Quantum Computing (Point of view adopted by Feynman himself).

- Quantum interactions are Quantum Communications: enables a unified Mathematical-Physics and Computer Science description, without the asymmetry $system \rightarrow observer$, towards the incorporation of entropy and information as part of the foundations of physics (An extended Equivalence Principle between energy and information; e.g. the “unit of a black-hole surface” is a bit of space-time - Lee Smolin; more general, quantum BH are “generic”: spin/qubit networks etc.).
Feynman Processes
(The Mathematical-Physics)

- **Representations** of a **causal structure**:
 - **Geometric category** (playing the role of “space-time”; NO embeddings yet!) e.g. Feynman-Kontsevich graphs, Segal PROP, cobordism categories, lattices etc.
 - **Functorial representation** (algebra over the PROP): QFT, CFT, ST, TQFT etc.

- **Physics interpretation and motivation (QG):**
 - In a **causal structure** there may be no locally defined space-time structure! (There may be loops etc.).
 - The causal structure is **NOT “fixed”** (like a manifold), but it is a **resolution** (role of multi-scale analysis, Haar wavelets MRA etc.); the **processes** are inter-related as a **complex**;
 - It is **NOT “the perturbative approach”**; but it may be the **outcome** of one:

 \[Z = \int \mathcal{D}\phi e^{S(\phi)} \quad \overset{\text{Wick's Th.}}{\longrightarrow} \sum_{\Gamma} \mathcal{F}(\Gamma)/|\text{Aut}(\Gamma)| h^{\text{deg}(\Gamma)} \]

 FPI and matrix-models are **“recipes”** for representations of causal structures. \(^5\)

\(^5\)Compare: DE and \(e^x \) - Taylor expansion ⇒ generating function of \(|\text{Aut}[n]| \) (“perturbation”: smooth → analytic/combinatorial/algebraic).
Abstract groups encoding the algebraic structure of groups of transformations (representations).

- **Operads**: encoding *types of algebraic structures* (like abstract groups encoded the “common practice”: groups of transformations):
 - Formal definition (D.F./Intro. to operads): a C operad over N: $O(n) \in Ob(C)$ (“operations”) and rules for composing these operations (the In/Out-motherboard picture);
 - **Ideals** and **quotients** (see Examples)
 - Presentations by **generators and relations** (see Examples)

- **Examples of operads**:
 - The operad Assoc (associative algebras; binary trees and relations);
 - The operad Lie (Jacobi id.)
 - The operad Comm (commutative algebras)

- **Representations of operads**: algebras over an operad $\rho: O \to \text{Vect}_k$.
 The endomorphism operad $\text{End}(V)(n) = \text{Hom}(V^\otimes n, V)$ etc.
“Doubling operads” ⇒ PROPs
- Multi-outputs and compositions: \(\mathcal{P}(m, n) \) (I/O)
- Operads become “half-PROPs”: \(\mathcal{O} \subset \mathcal{P} \), and the standard PROP generated by an operad \(\mathcal{P}(\mathcal{O}) = \mathcal{O}^*\mathcal{O} \)
- Examples:
 - The endomorphims PROP \(\mathcal{P}(n, m) = Hom(V^n, V^m) \).
 - **Feynman PROP** (Gerstenhaber composition),
 - **Cobordisms** (Topological gluing),
 - **Segal PROP** (Sewing Riemann surfaces) etc.

Algebras over PROPs:
- Representations \(\rho : \mathcal{P} \to Vect_k \) etc.
- Examples (see A. A. Voronov - hep-th/9401023):
 - **QFT** (Feynman rules),
 - **TQFTs** (e.g. Frobenius algebras)
 - **CFT** (sewing Riemann surfaces) etc.
 - **String Backgrounds** (chains of RS and homotopy Lie algebras): \(C_*\mathcal{P}(m, n) \to End(H, Q)(m, n), \ Q^2 = 0 \).

More structure: DG-coalgebra PROPs / homological algebra of PROPs (homology differential, insertion/elimination of subgraphs as extensions, cohomology of Feynman graphs etc.)

6 also an algebra over the PROP of trees
“Perturbative” or not?
(This is the question ...)

- What is “new” in this “perturbative approaches” to “space-time”?
 - Enables the resolution / multi-scale analysis (MRA);
 - Involves in a fundamental way “symmetry fluctuations” of the causal structure (and entropy etc.).
 - Prompts for an Q-information flow interpretation of the quantum dynamics (FPI at two levels: partition function AND within a possible Feynman graph/RS etc.)

- So, what is a Feynman process? Suggested by the DG-coalgebra structure of Feynman graphs

\[
\begin{align*}
\gamma \subset \Gamma & \rightarrow \Gamma/\gamma \\
\gamma \subset [k] & \overset{\gamma}{\rightarrow} [l] \\
\gamma \subset [n] & \overset{\Gamma}{\rightarrow} [m] \\
\gamma \subset [n-k] & \overset{\Gamma/\gamma}{\rightarrow} [m-l],
\end{align*}
\]

a Feynman Category (FC) is a **DG-coalgebra PROP** of finite type (may be with some additional structure ...).

The coalgebra structure encodes the factorization of morphisms/processes in the space-like/resolution depth direction.

A Feynman process is an algebra over a FC (involving an $SU(2) \oplus SU(2)$ action ...)

7Better: it IS a model for a discrete (quantum) “space-time”, NOT just an approximation of a continuum one; the continuum limit is the approximation!

8Related to the Vir/conformal symmetries etc.
Homology & Cohomology of Feynman Categories
(How to build Feynman Processes)

- Once a Feynman Category \mathcal{F} is given, one can study the **generalized (co)homology of a manifold**: embedding points, graphs, surfaces, cobordisms etc. (homology/homotopy of the configuration spaces):

 \[\text{“Hom(geometric category, ambient manifold)"} \]

Example/model: the category of finite ordered sets Δ.

- **Develop an abstract theory of FC** (from continuum/manifold theory to discrete / graph theory):

 1) Discretize the manifold;

 2) **Pullback “The Theory”** to the “geometric category” (e.g. history of abstract groups: groups of transformations to abstract groups);

 3) Study the representation theory (Cohomology with coefficients in a modular category).

- **Exercise**: start with Feynman-Kontsevich graphs as a warm up, before attacking String Theory!

- **QFT and graph cohomology, CFT, TQFT etc.: cohomological physics (Stasheff).**

- **Work in progress with Domenico Fiorenza**: Configuration spaces, cohomology of Feynman diagrams and Connes-Kreimer renormalization.
From *Continuum* to Discrete

- **The “pull-back philosophy” is a growing trend in high-energy physics:**
 - Loop QG starts from a GR manifold picture and ends up with a discrete space-time (spin-networks and spin-foams etc.);
 - String Theory as a “background-free” theory (future);
 - It saves time to “adopt” the “Feynman Picture” from the beginning. Feynman processes are “just” enriched and complexified Markov processes ...

- **What is “Space-Time”?**
 - “It does not matter; all we need is a resolution!” (Paraphrasing Manin-Gelfand, *Homological algebra*)
 - The K’s sigma-model quasi-isomorphism IS a resolution of the “ambient space-time” 9;
 - *Feynman Process = Geometric Category* (“resolution of space-time”), σ-model $\text{Hom}(\cdot, M)$ (*Configuration Functor*) and **FPI-quantization** → its derived functors ...?
 - The importance of Kontsevich’s approach to deformation quantization based on graphs: **PROP with extentions**, like a *homotopy structure* (I don’t see the “extension capability” for Riemann surfaces; where is the differential?)

9 Conjecture; to be made precise later ...
The “Missing Physics”...

- Equivalence between Energy and Information
 - Shannon entropy:
 \[S = k \ln W \quad \iff \quad S = k |Aut(\Gamma)|. \]
 i.e. entropy as a measure of symmetry!
 - Feynman Processes as Quantum Information Dynamics (QID).
 - Equivalence between mass-energy and entropy (information), at the fundamental level: include entropy in the action, via the symmetry group:
 \[
 Z = \int_{\gamma \in \text{Hom}(\text{In,Out})} e^{iS(\gamma) / |Aut(\gamma)|}, \]
 \[
 e^{iS(\gamma) / |Aut(\gamma)|} = e^{-\ln |Aut(\gamma)| + iS(\gamma)}
 \]
 \[
 Z = \int_{\text{Hom}(\text{In,Out})} e^{S + iS} d\mu.
 \]

- Other connections (speculations):
 - Green functions and \(S + iS = -\ln |Aut(\gamma)| + iS(\gamma) \) etc.
 - Unifying Euclidean field theory and statistical formalism; generalizing Wick rotation to completely unify space and time;
 - Breaking/changing the symmetry (change in entropy) is at the same level with energy flow: are mass and gravity an entropic effect ... (rest mass/energy = entropy).
Additional Evidence:

- Laws of radiation of black holes (entropy is proportional with the surface area etc.)
- Other contributions hinting in the “same direction”:
 - Lee Smolin - “pixel of space-time” (perhaps better: qubit);
 - B. J. Hiley and quantum potential (I add: information potential)
 - Bob Coecke and quantum information-flow at the level of QM, meaning the quantum computation “order” (flow); (Must be generalized to QFT)
- Presenter’s personal impression: there is “new physics” at the horizon \(^{10}\), for the already existing mathematics (It wouldn’t be for the 1st time!)

Bibliography:

\(^{10}\)”Low Entropy Physics”: LEP versus HEP-th.”
Conclusions

- HEP-th is a study of representations of PROPs: Feynman, Segal, cobordism categories etc.

“New Mathematics”?

- A Feynman Category ("geometric category" representing the causal structure), e.g. Feynman graphs, is a resolution of “space-time” (Perturbative versus “Resolution” point of view: different grading)

- (Project) QFT, String Theory etc. and “derived functors” of a Configuration Functor (σ models)

- Importance of Kontsevich’s construction and quasi-iso: is the formality morphism an augmentation of a resolution of the sigma model by a causal structure?

\[
\text{Feynman Category} \xrightarrow{\text{quasi-iso}} \text{Formal Manifold}
\]

\[
DGCA/DGLA : (G, d, \Delta) \xrightarrow{\varepsilon} (\text{End}(T(A)), Q).
\]

“New Physics”?

- Entropy as a measure of symmetry enters the dynamics of the space-time (information dynamics in an extended sense);

- Feynman Processes as Quantum Information Dynamics (QID)

\[
\ldots (\text{The End } ^{11}) \ldots
\]

\[11 \cong \text{ new beginning.}\]